Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Journal of diabetes and its complications ; 2023.
Article in English | EuropePMC | ID: covidwho-2302792

ABSTRACT

Background We used detailed information on patients with diabetes admitted to hospital to determine differences in clinical outcomes before and during the COVID-19 pandemic in the UK. Methods The study used electronic patient record data from Imperial College Healthcare NHS Trust. Hospital admission data for patients coded for diabetes was analysed over three time periods: pre-pandemic (31st January 2019–31st January 2020), Wave 1 (1st February 2020–30th June 2020), and Wave 2 (1st September 2020–30th April 2021). We compared clinical outcomes including glycaemia and length of stay. Results We analysed data obtained from 12,878, 4008 and 7189 hospital admissions during the three pre-specified time periods. The incidence of Level 1 and Level 2 hypoglycaemia was significantly higher during Waves 1 and 2 compared to the pre-pandemic period (25 % and 25.1 % vs. 22.9 % for Level 1 and 11.7 % and 11.5 % vs. 10.3 % for Level 2). The incidence of hyperglycaemia was also significantly higher during the two waves. The median hospital length of stay increased significantly (4.1[1.6, 9.8] and 4.0[1.4, 9.4] vs. 3.5[1.2, 9.2] days). Conclusions During the COVID-19 pandemic in the UK, hospital in-patients with diabetes had a greater number of hypoglycaemic/hyperglycaemic episodes and an increased length of stay when compared to the pre-pandemic period. This highlights the necessity for a focus on improved diabetes care during further significant disruptions to healthcare systems and ensuring minimisation of the impact on in-patient diabetes services. Summary Diabetes is associated with poorer outcomes from COVID-19. However the glycaemic control of inpatients before and during the COVID-19 pandemic is unknown. We found the incidence of hypoglycaemia was significantly higher during the pandemic highlighting the necessity for a focus on improved diabetes care during further pandemics.

2.
JMIR Public Health Surveill ; 8(8): e37668, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-1993694

ABSTRACT

BACKGROUND: Most studies of long COVID (symptoms of COVID-19 infection beyond 4 weeks) have focused on people hospitalized in their initial illness. Long COVID is thought to be underrecorded in UK primary care electronic records. OBJECTIVE: We sought to determine which symptoms people present to primary care after COVID-19 infection and whether presentation differs in people who were not hospitalized, as well as post-long COVID mortality rates. METHODS: We used routine data from the nationally representative primary care sentinel cohort of the Oxford-Royal College of General Practitioners Research and Surveillance Centre (N=7,396,702), applying a predefined long COVID phenotype and grouped by whether the index infection occurred in hospital or in the community. We included COVID-19 infection cases from March 1, 2020, to April 1, 2021. We conducted a before-and-after analysis of long COVID symptoms prespecified by the Office of National Statistics, comparing symptoms presented between 1 and 6 months after the index infection matched with the same months 1 year previously. We conducted logistic regression analysis, quoting odds ratios (ORs) with 95% CIs. RESULTS: In total, 5.63% (416,505/7,396,702) and 1.83% (7623/416,505) of the patients had received a coded diagnosis of COVID-19 infection and diagnosis of, or referral for, long COVID, respectively. People with diagnosis or referral of long COVID had higher odds of presenting the prespecified symptoms after versus before COVID-19 infection (OR 2.66, 95% CI 2.46-2.88, for those with index community infection and OR 2.42, 95% CI 2.03-2.89, for those hospitalized). After an index community infection, patients were more likely to present with nonspecific symptoms (OR 3.44, 95% CI 3.00-3.95; P<.001) compared with after a hospital admission (OR 2.09, 95% CI 1.56-2.80; P<.001). Mental health sequelae were more strongly associated with index hospital infections (OR 2.21, 95% CI 1.64-2.96) than with index community infections (OR 1.36, 95% CI 1.21-1.53; P<.001). People presenting to primary care after hospital infection were more likely to be men (OR 1.43, 95% CI 1.25-1.64; P<.001), more socioeconomically deprived (OR 1.42, 95% CI 1.24-1.63; P<.001), and with higher multimorbidity scores (OR 1.41, 95% CI 1.26-1.57; P<.001) than those presenting after an index community infection. All-cause mortality in people with long COVID was associated with increasing age, male sex (OR 3.32, 95% CI 1.34-9.24; P=.01), and higher multimorbidity score (OR 2.11, 95% CI 1.34-3.29; P<.001). Vaccination was associated with reduced odds of mortality (OR 0.10, 95% CI 0.03-0.35; P<.001). CONCLUSIONS: The low percentage of people recorded as having long COVID after COVID-19 infection reflects either low prevalence or underrecording. The characteristics and comorbidities of those presenting with long COVID after a community infection are different from those hospitalized. This study provides insights into the presentation of long COVID in primary care and implications for workload.


Subject(s)
COVID-19 , Cross Infection , COVID-19/complications , Female , Humans , Male , SARS-CoV-2 , White People , Post-Acute COVID-19 Syndrome
3.
Lancet Digit Health ; 4(9): e646-e656, 2022 09.
Article in English | MEDLINE | ID: covidwho-1967558

ABSTRACT

BACKGROUND: Accurate assessment of COVID-19 severity in the community is essential for patient care and requires COVID-19-specific risk prediction scores adequately validated in a community setting. Following a qualitative phase to identify signs, symptoms, and risk factors, we aimed to develop and validate two COVID-19-specific risk prediction scores. Remote COVID-19 Assessment in Primary Care-General Practice score (RECAP-GP; without peripheral oxygen saturation [SpO2]) and RECAP-oxygen saturation score (RECAP-O2; with SpO2). METHODS: RECAP was a prospective cohort study that used multivariable logistic regression. Data on signs and symptoms (predictors) of disease were collected from community-based patients with suspected COVID-19 via primary care electronic health records and linked with secondary data on hospital admission (outcome) within 28 days of symptom onset. Data sources for RECAP-GP were Oxford-Royal College of General Practitioners Research and Surveillance Centre (RCGP-RSC) primary care practices (development set), northwest London primary care practices (validation set), and the NHS COVID-19 Clinical Assessment Service (CCAS; validation set). The data source for RECAP-O2 was the Doctaly Assist platform (development set and validation set in subsequent sample). The two probabilistic risk prediction models were built by backwards elimination using the development sets and validated by application to the validation datasets. Estimated sample size per model, including the development and validation sets was 2880 people. FINDINGS: Data were available from 8311 individuals. Observations, such as SpO2, were mostly missing in the northwest London, RCGP-RSC, and CCAS data; however, SpO2 was available for 1364 (70·0%) of 1948 patients who used Doctaly. In the final predictive models, RECAP-GP (n=1863) included sex (male and female), age (years), degree of breathlessness (three point scale), temperature symptoms (two point scale), and presence of hypertension (yes or no); the area under the curve was 0·80 (95% CI 0·76-0·85) and on validation the negative predictive value of a low risk designation was 99% (95% CI 98·1-99·2; 1435 of 1453). RECAP-O2 included age (years), degree of breathlessness (two point scale), fatigue (two point scale), and SpO2 at rest (as a percentage); the area under the curve was 0·84 (0·78-0·90) and on validation the negative predictive value of low risk designation was 99% (95% CI 98·9-99·7; 1176 of 1183). INTERPRETATION: Both RECAP models are valid tools to assess COVID-19 patients in the community. RECAP-GP can be used initially, without need for observations, to identify patients who require monitoring. If the patient is monitored and SpO2 is available, RECAP-O2 is useful to assess the need for treatment escalation. FUNDING: Community Jameel and the Imperial College President's Excellence Fund, the Economic and Social Research Council, UK Research and Innovation, and Health Data Research UK.


Subject(s)
COVID-19 , Dyspnea , Female , Humans , Male , Primary Health Care , Prospective Studies , Risk Factors
4.
EClinicalMedicine ; 46: 101344, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1734348

ABSTRACT

Background: A single dose strategy may be adequate to confer population level immunity and protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, especially in low- and middle-income countries where vaccine supply remains limited. We compared the effectiveness of a single dose strategy of the Oxford-AstraZeneca or Pfizer-BioNTech vaccines against SARS-CoV-2 infection across all age groups and over an extended follow-up period. Methods: Individuals vaccinated in North-West London, UK, with either the first dose of the Oxford-AstraZeneca or Pfizer-BioNTech vaccines between January 12, 2021 and March 09, 2021, were matched to each other by demographic and clinical characteristics. Each vaccinated individual was additionally matched to an unvaccinated control. Study outcomes included SARS-CoV-2 infection of any severity, COVID-19 hospitalisation, COVID-19 death, and all-cause mortality. Findings: Amongst matched individuals, 63,608 were in each of the vaccine groups and 127,216 were unvaccinated. Between 14 and 84 days of follow-up after matching, there were 534 SARS-CoV-2 infections, 65 COVID-19 hospitalisations, and 190 deaths, of which 29 were categorized as due to COVID-19. The incidence rate ratio (IRR) for SARS-CoV-2 infection was 0.85 (95% confidence interval [CI], 0.69 to 1.05) for Oxford-Astra-Zeneca, and 0.69 (0.55 to 0.86) for Pfizer-BioNTech. The IRR for both vaccines was the same at 0.25 (0.09 to 0.55) and 0.14 (0.02 to 0.58) for reducing COVID-19 hospitalization and COVID-19 mortality, respectively. The IRR for all-cause mortality was 0.25 (0.15 to 0.39) and 0.18 (0.10 to 0.30) for the Oxford-Astra-Zeneca and Pfizer-BioNTech vaccines, respectively. Age was an effect modifier of the association between vaccination and SARS-CoV-2 infection of any severity; lower hazard ratios for increasing age. Interpretation: A single dose strategy, for both vaccines, was effective at reducing COVID-19 mortality and hospitalization rates. The magnitude of vaccine effectiveness was comparatively lower for SARS-CoV-2 infection, although this was variable across the age range, with higher effectiveness seen with older adults. Our results have important implications for health system planning -especially in low resource settings where vaccine supply remains constrained.

5.
JMIR Public Health Surveill ; 7(9): e30010, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1417039

ABSTRACT

BACKGROUND: On March 11, 2020, the World Health Organization declared SARS-CoV-2, causing COVID-19, as a pandemic. The UK mass vaccination program commenced on December 8, 2020, vaccinating groups of the population deemed to be most vulnerable to severe COVID-19 infection. OBJECTIVE: This study aims to assess the early vaccine administration coverage and outcome data across an integrated care system in North West London, leveraging a unique population-level care data set. Vaccine effectiveness of a single dose of the Oxford/AstraZeneca and Pfizer/BioNTech vaccines were compared. METHODS: A retrospective cohort study identified 2,183,939 individuals eligible for COVID-19 vaccination between December 8, 2020, and February 24, 2021, within a primary, secondary, and community care integrated care data set. These data were used to assess vaccination hesitancy across ethnicity, gender, and socioeconomic deprivation measures (Pearson product-moment correlations); investigate COVID-19 transmission related to vaccination hubs; and assess the early effectiveness of COVID-19 vaccination (after a single dose) using time-to-event analyses with multivariable Cox regression analysis to investigate if vaccination independently predicted positive SARS-CoV-2 in those vaccinated compared to those unvaccinated. RESULTS: In this study, 5.88% (24,332/413,919) of individuals declined and did not receive a vaccination. Black or Black British individuals had the highest rate of declining a vaccine at 16.14% (4337/26,870). There was a strong negative association between socioeconomic deprivation and rate of declining vaccination (r=-0.94; P=.002) with 13.5% (1980/14,571) of individuals declining vaccination in the most deprived areas compared to 0.98% (869/9609) in the least. In the first 6 days after vaccination, 344 of 389,587 (0.09%) individuals tested positive for SARS-CoV-2. The rate increased to 0.13% (525/389,243) between days 7 and 13, before then gradually falling week on week. At 28 days post vaccination, there was a 74% (hazard ratio 0.26, 95% CI 0.19-0.35) and 78% (hazard ratio 0.22, 95% CI 0.18-0.27) reduction in risk of testing positive for SARS-CoV-2 for individuals that received the Oxford/AstraZeneca and Pfizer/BioNTech vaccines, respectively, when compared with unvaccinated individuals. A very low proportion of hospital admissions were seen in vaccinated individuals who tested positive for SARS-CoV-2 (288/389,587, 0.07% of all patients vaccinated) providing evidence for vaccination effectiveness after a single dose. CONCLUSIONS: There was no definitive evidence to suggest COVID-19 was transmitted as a result of vaccination hubs during the vaccine administration rollout in North West London, and the risk of contracting COVID-19 or becoming hospitalized after vaccination has been demonstrated to be low in the vaccinated population. This study provides further evidence that a single dose of either the Pfizer/BioNTech vaccine or the Oxford/AstraZeneca vaccine is effective at reducing the risk of testing positive for COVID-19 up to 60 days across all age groups, ethnic groups, and risk categories in an urban UK population.


Subject(s)
Anti-Vaccination Movement/statistics & numerical data , COVID-19 Vaccines/standards , Immunization Programs/standards , Anti-Vaccination Movement/psychology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Cohort Studies , Hospitalization/statistics & numerical data , Humans , Immunization Programs/statistics & numerical data , London , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL